Structure-based variable selection for survival data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Variable Selection for Survival Data

The minimal depth of a maximal subtree is a dimensionless order statistic measuring the predictiveness of a variable in a survival tree. We derive the distribution of the minimal depth and use it for high-dimensional variable selection using random survival forests. In big p and small n problems (where p is the dimension and n is the sample size), the distribution of the minimal depth reveals a...

متن کامل

Variable Selection for Multivariate Survival data

It is assumed for the Cox’s proportional hazards model that the survival times of subjects are independent. This assumption might be violated in some situations, in which the collected data are correlated. The well-known Cox model is not valid in this situation because independence assumption among individuals is violated. For this purpose Cox’s proportional hazard model is extent to the analys...

متن کامل

Covariance - based variable selection for compositional data

by Karel Hron23, Peter Filzmoser4, Sandra Donevska23 and Eva Fǐserová23 1 Received ....................; accepted .......................... 2 Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; e-mail: [email protected], [email protected], [email protected] 3 Department of Geoinformati...

متن کامل

Meta-analysis based variable selection for gene expression data.

Recent advance in biotechnology and its wide applications have led to the generation of many high-dimensional gene expression data sets that can be used to address similar biological questions. Meta-analysis plays an important role in summarizing and synthesizing scientific evidence from multiple studies. When the dimensions of datasets are high, it is desirable to incorporate variable selectio...

متن کامل

Variable selection for multivariate failure time data.

In this paper, we proposed a penalised pseudo-partial likelihood method for variable selection with multivariate failure time data with a growing number of regression coefficients. Under certain regularity conditions, we show the consistency and asymptotic normality of the penalised likelihood estimators. We further demonstrate that, for certain penalty functions with proper choices of regulari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2010

ISSN: 1460-2059,1367-4803

DOI: 10.1093/bioinformatics/btq261